Mars Rover finds water on Mars?

Share this page!

In Oct 2010, NASA claims to find water on Mars, or did they? Here’s the story: Discovery news (link). Notice the wording: Mar Rover Spirit finds “evidence” of water on Mars.

Next claim: Mars rover finds “puddles” on the planet’s surface (New Scientist Link). Then there is an update on the page that says: Update: The researchers have retracted their claim about the possibility of standing water on Mars after readers pointed out the terrain lies on the sloped wall of a crater. It takes readers from a blog to point out NASA’s mistake? Or maybe attempted deception? Why deception? Well there is about a trillion dollars involved in sending a manned space ship. That much money can corrupt most people.

No oceans, flowing streams, waterfalls? NASA is ready to commit to anything as evidence for water on mars, and here’s why:

They have already committed to oceans of water being on mars. Spent money to animate it, and they want to spend a trillion dollars to send a manned spaceship there. So there is a lot of grant money involved in selling the idea to the public and to the government. But selling is not proving. Anyone can animate an idea to sell the idea, but only finding evidence of what could have been on mars, is not proving what has been on mars.

Video

Video

Also, when you make claims better not forget the laws of physics. To sustain water a planet has to have certain conditions. Mars does not have this.

1) The right barometric pressures aka atmospheric pressures. Mars has 1/32 the pressure of earth. That means water boils at 50 degrees F. or less. And mars gets as high as 70 degrees.

2) Mars has to have the right molecules (H2O) on the air to make water. But mars atmosphere is 98% CO2. Which means there is only enough hydrogen in the atnosphere to make a pond of water not a ocean.

3) Water boiling means if there were evidence of water it would be in the atmosphere. 98% CO2 = no evidence, ZERO!

4) As far as life goes. There is no ozone layer so full rays of the sun would strike the surface. UV rays not being filtered at all would sterilize the planet. And that’s what we see since there has been no soil microbes found anywhere on the planet.

5) What about the ice? A atmosphere that has 98% CO2, and if it gets cold enough at the poles and it does. Will freeze CO2 in mid air and it will fall to the ground like snow and look like H2O ice when it’s not.

6) What NASA fails to tell people because they are trying to sell life on other planets. And that planets can have 2 different types of ice. H2O and CO2 ice. The ice you see on mars is 100% CO2, and that’s provable by the atmosphere having 98% CO2 and not enough hydrogen to even mention. Google it if you do not believe me.

NASA Lies.

CO2 aka Dry ice, looks just like regular ice.

So what would be more feasible type ice on mars with a 98% CO2 atmosphere?

1) H2O ice?
2) CO2 ice?

If you choose #1, I have to ask: Where did the 2 parts hydrogen come from to make enough water to create oceans of water when there is only a trace of hydrogen?

Share this page!

 

 

 

YouTube

 

 

 

FaceBook Feed
Comments Box SVG iconsUsed for the like, share, comment, and reaction icons
Good Fight Ministries
Good Fight Ministries

Joe Schimmel’s Testimony

Blessed Hope Chapel
Wed. May 22, 2019 – Wednesday Night Bible Study led by Pastor Joe Schimmel.
... See MoreSee Less

Comment on Facebook

Thank you for sharing Pastor Joe!!

Ark Encounter
Ark Encounter
Veterans receive free admission on Memorial Day (May 27)!

Veterans receive free admission on Memorial Day (May 27)! ... See MoreSee Less

Comment on Facebook

Ruthann Blizzard Michael Blizzard

Uh, that's not nearly enough manpower for a ship that size.

See ya'll next weekend! Can't wait!

Creation Research Society
Creation Research Society
The Role of Epigenetics in Adaptation, Part 1

The following Matters of Fact column by CRS board member Dr. Jean Lightner appeared in Creation Matters, Vol. 23, No. 3, May/June 2018.

Q.  Does epigenetics play a role in adaptation? 
A.  Physiologist: YES! Evolutionary biologist: Maybe…. 

Adaptation, in the sense that we will discuss, can be defined as changes which help an organism become better suited to its environment. It is related to one of the foundational characteristics of life: the ability to respond to the environment. Physiological adaptation relies on epigenetics, or modifications that can affect gene expression. This does not change the sequence of DNA, but allows genes to be up or down regulated to suit the needs of the organism (see Lightner, 2013). 

There are several known mechanisms of epigenetic regulation (Figure 1): 

1) histone modification (including acetylation, phosphorylation, and methylation) 

2) cytosine methylation in DNA 

3) various non-coding RNA molecules (miRNA, siRNA, piRNA, and lncRNA) 

These mechanisms vary in the timeframe over which they typically act, allowing for both rapid changes and more stable, long-term changes. 

Scientists had assumed that these types of changes could not be inherited by offspring. The basis for this was largely philosophical: the Modern Synthesis (aka Neo-Darwinism) was predicated on the idea that the environment could not direct phenotypic change. Instead, the source of phenotypic variation is claimed to be from random genetic mutations; natural selection then reduces or eliminates less fit variants. To support the conjecture that epigenetic changes are not heritable, some scientists pointed to the observation that DNA methylation patterns are reset in pathways leading to offspring (i.e., germ cell formation and fertilization). However, it is now recognized that the reset of DNA methylation isn’t always complete, and it is not the only mechanism involved in trans-generational epigenetic inheritance (Morgan et al., 1999; Rassoulzadegan et al., 2006). 

For several decades now, it has been known that epigenetic inheritance can provide a source of heritable variation. However, it is not yet clear how often it does so, and what role it plays in adaptation of populations. Research has increased on this important topic, but much remains to be learned. One recent review article identified a web of potential interactions. It also pointed out that understanding patterns of natural epigenetic variation, the causes of that variation, and the consequences of it are necessary to adequately address the role it may have in adaptation (Richards et al., 2017). 

Factors influencing epigenetic variation 

In some studies it appears that DNA methylation differences are associated with underlying genetic differences. This raises the possibility of genetic control of epigenetic variability. It is also possible that a stable epimutation (heritable epigenetic change) could be inherited along with the underlying genetic sequence, thus causing the correlation. It has also been noted that epigenetic changes can influence genetic variation, specifically as it relates to silencing transposable elements, whose movement can change the sequence of a gene or its promoter (Richards et al., 2017). 

Some epimutations appear to arise stochastically. If these are stable over multiple generations, then natural selection may affect the pattern of variation. It is also known that environmental factors can effect heritable epigenetic changes, but the pattern and extent of this is not well known. Significant work needs to be done across different species, especially wild plants and animals, before reasonable generalizations can be made (Balao et al. 2018; Richards et al., 2017). 

FIGURE 1. A chromosome is made up of DNA coiled around proteins, called histones. There are three basic mechanisms by which epigenetic changes can be made. First, the tail of the histone proteins can undergo several types of modification (A), including phosphorylation (Ph), methylation (Me), and acetylation (Ac), that can affect accessibility of specific genes. Secondly, cytosine residues in DNA can be methylated (red dot) or un– methylated (green dot), the details of which are represented in section B of the figure. This affects gene transcription (the copying of DNA to make mRNA). Finally, various microRNAs (C) can bind mRNA to prevent synthesis into proteins. All of these mechanisms play a role in changing gene expression without affecting the DNA sequence. (Illustration is from Gómez-Díaz et al., 2012, and is used herein according to the CC BY license. )

Learn more about creation www.creationresearch.org

The Role of Epigenetics in Adaptation, Part 1

The following Matters of Fact column by CRS board member Dr. Jean Lightner appeared in Creation Matters, Vol. 23, No. 3, May/June 2018.

Q. Does epigenetics play a role in adaptation?
A. Physiologist: YES! Evolutionary biologist: Maybe….

Adaptation, in the sense that we will discuss, can be defined as changes which help an organism become better suited to its environment. It is related to one of the foundational characteristics of life: the ability to respond to the environment. Physiological adaptation relies on epigenetics, or modifications that can affect gene expression. This does not change the sequence of DNA, but allows genes to be up or down regulated to suit the needs of the organism (see Lightner, 2013).

There are several known mechanisms of epigenetic regulation (Figure 1):

1) histone modification (including acetylation, phosphorylation, and methylation)

2) cytosine methylation in DNA

3) various non-coding RNA molecules (miRNA, siRNA, piRNA, and lncRNA)

These mechanisms vary in the timeframe over which they typically act, allowing for both rapid changes and more stable, long-term changes.

Scientists had assumed that these types of changes could not be inherited by offspring. The basis for this was largely philosophical: the Modern Synthesis (aka Neo-Darwinism) was predicated on the idea that the environment could not direct phenotypic change. Instead, the source of phenotypic variation is claimed to be from random genetic mutations; natural selection then reduces or eliminates less fit variants. To support the conjecture that epigenetic changes are not heritable, some scientists pointed to the observation that DNA methylation patterns are reset in pathways leading to offspring (i.e., germ cell formation and fertilization). However, it is now recognized that the reset of DNA methylation isn’t always complete, and it is not the only mechanism involved in trans-generational epigenetic inheritance (Morgan et al., 1999; Rassoulzadegan et al., 2006).

For several decades now, it has been known that epigenetic inheritance can provide a source of heritable variation. However, it is not yet clear how often it does so, and what role it plays in adaptation of populations. Research has increased on this important topic, but much remains to be learned. One recent review article identified a web of potential interactions. It also pointed out that understanding patterns of natural epigenetic variation, the causes of that variation, and the consequences of it are necessary to adequately address the role it may have in adaptation (Richards et al., 2017).

Factors influencing epigenetic variation

In some studies it appears that DNA methylation differences are associated with underlying genetic differences. This raises the possibility of genetic control of epigenetic variability. It is also possible that a stable epimutation (heritable epigenetic change) could be inherited along with the underlying genetic sequence, thus causing the correlation. It has also been noted that epigenetic changes can influence genetic variation, specifically as it relates to silencing transposable elements, whose movement can change the sequence of a gene or its promoter (Richards et al., 2017).

Some epimutations appear to arise stochastically. If these are stable over multiple generations, then natural selection may affect the pattern of variation. It is also known that environmental factors can effect heritable epigenetic changes, but the pattern and extent of this is not well known. Significant work needs to be done across different species, especially wild plants and animals, before reasonable generalizations can be made (Balao et al. 2018; Richards et al., 2017).

FIGURE 1. A chromosome is made up of DNA coiled around proteins, called histones. There are three basic mechanisms by which epigenetic changes can be made. First, the tail of the histone proteins can undergo several types of modification (A), including phosphorylation (Ph), methylation (Me), and acetylation (Ac), that can affect accessibility of specific genes. Secondly, cytosine residues in DNA can be methylated (red dot) or un– methylated (green dot), the details of which are represented in section B of the figure. This affects gene transcription (the copying of DNA to make mRNA). Finally, various microRNAs (C) can bind mRNA to prevent synthesis into proteins. All of these mechanisms play a role in changing gene expression without affecting the DNA sequence. (Illustration is from Gómez-Díaz et al., 2012, and is used herein according to the CC BY license. )

Learn more about creation www.creationresearch.org
... See MoreSee Less

Hidden History of Evolution
Hidden History of Evolution
~ Issac

~ Issac ... See MoreSee Less

Comment on Facebook

Evolution is a lie, based on unsupported assumptions.

Science leads to God
Science leads to God
Had to stop the test, cant have evolution proven wrong. ~ Issac

Had to stop the test, can't have evolution proven wrong. ~ Issac ... See MoreSee Less

180 Movie
180 Movie

Are you one of the over 49,500 views who’s watched “7 Reasons” on YouTube since its release a week ago?

We’ve been so encouraged to read the many online comments, such as this one from YouTube:

"This is THE first time I’ve ever cried (quietly flowing down my cheeks and dripping off my chin kinda tears), regarding the abortion I had 9 years ago. I’ve LITERALLY NEVER felt convicted, not once before…And after watching this.. well, yeh.. I’ve just sat here frowning, now my eyes have dried, and thinking to myself, “Wow, what IS happening to me?!”…I’m a feminist, pro-choice (I thought), equality, love and peace to all kinda person. I guess I better think again................. Mind = blown. Thank you for this video."

If you haven't watched and shared it yet, watch "7 Reasons" free on YouTube at 7ReasonsMovie.com
... See MoreSee Less

Ray Comfort has mental retardation ... See MoreSee Less

Pray for Militant Atheist Page.
Pray for Militant Atheist Page.
n case you did not know this. ~ Issac

n case you did not know this. ~ IssacIn case you did not know this. ~ Issac ... See MoreSee Less

Where is the evolution?
Where is the evolution?
Name: Monito del Monte
Status: Thought to be extinct until its rediscovery.
Information: A remarkable, diminutive marsupial thought to have been extinct until one was discovered in a thicket of Chilean bamboo in the southern Andes.
Thought to exist: 55 million years ago.
Reference: http://historysevidenceofdinosaursandmen.weebly.com/living-fossils.html
The fossilised ankle and ear bones are those of Australias earliest known marsupial, Djarthia, a primitive mouse-like creature that lived 55 million years ago. ..a new study in the journal PLoS ONE [http://www.plosone.org/] has confirmed that Djarthia is also a primitive relative of the small marsupial known as the Monito del Monte - or little mountain monkey - from the dense humid forests of Chile and Argentina.
Reference: http://www.create.unsw.edu.au/news/2008-03-25_monito.html
The monito del monte, Spanish for ‘little bush monkey’, named after its monkey-like partially prehensile tail, is a diminutive marsupial native to South America in the Valdivian temperate rain forests of the southern Andes (Chile and Argentina). It is the only extant species in the ancient order of Microbiotheria. ...Genetic studies show that this species retains the most primitive characteristics of its group, and thus is regarded as a “living fossil.”
reference: http://www.eartharchives.org/articles/scientists-uncover-two-new-species-of-elusive-south-american-marsupial/

Name: Monito del Monte
Status: Thought to be extinct until it's rediscovery.
Information: A remarkable, diminutive marsupial thought to have been extinct until one was discovered in a thicket of Chilean bamboo in the southern Andes.
Thought to exist: 55 million years ago.
Reference: http://historysevidenceofdinosaursandmen.weebly.com/…
"The fossilised ankle and ear bones are those of Australia's earliest known marsupial, Djarthia, a primitive mouse-like creature that lived 55 million years ago. ..a new study in the journal PLoS ONE [http://www.plosone.org/] has confirmed that Djarthia is also a primitive relative of the small marsupial known as the Monito del Monte - or "little mountain monkey" - from the dense humid forests of Chile and Argentina."
Reference: http://create.unsw.edu.au/news/…
"The monito del monte, Spanish for ‘little bush monkey’, named after its monkey-like partially prehensile tail, is a diminutive marsupial native to South America in the Valdivian temperate rain forests of the southern Andes (Chile and Argentina). It is the only extant species in the ancient order of Microbiotheria. ...Genetic studies show that this species retains the most primitive characteristics of its group, and thus is regarded as a “living fossil.”"
reference: http://eartharchives.org/articles/…
... See MoreSee Less

Comment on Facebook

Your picture makes it seem like the two species shown are found 55 Ma apart even though they are both modern species. Rather, it was the genus Djarthia (whose exact taxonomic position is uncertain) that occurs in the Paleocene, as noted in the PLOS paper you provided. This graphic is either a misunderstanding or diliberate misrepresentation of the references cited. May I ask what formal training in paleontology the admin of this page has had?

We didn't claim the skulls were from a 55 million year old fossil, it is the references that claim Monito del Monte is regarded as a living fossil and thought to exist: 55 million years ago.

Colby, please stop spamming the contrasts. There is no need to post the same link multiple times, Thank you.

I was just doing a one shot on each post. I didnt even think anyone even looked at this page anymore. I apologize.

Looks like the Colbinator deleted his post 😭

View more comments

Load more