Empirical evidences for World Wide Flood

Share this page!

This will be undeniable evidence that any creationist can use to prove that the Flood did create a lot of what we see, and not “Deep Time” like the evolutionists claim. I will try to put all the information in an order that is easy to understand along with being as brief as possible without leaving the important stuff out.

  • Is there enough water for a World Wide Flood? Yes there is. In the past few years using seismic tools. They have found that a mineral called ” wadsleyite” holds 2% water by weight. That may not sound like much until you realize how much wadsleyite exists in the upper mantle of the earth. Figures show that 2% would work out to be somewhere around 30 oceans worth added to the water that we already know exists. And this has been tested in more than one place by more than one scientist which makes the results observable and repeatable which is empirical evidence. Which means evolutionists can no longer deny the possibility that a flood of this magnitude could happen.
    References:
    http://www.livescience.com/1312-huge-ocean-discovered-earth.htmlhttp://phys.org/news90171847.htmlhttp://news.wustl.edu/news/Pages/8749.aspx
  • Can the waters from the flood lay out the Geologic Column as we see it today? The evolutionist side has no observable mechanism to do this so all they have is the claim that “Deep Time” did it. But water will sort sediments and is observable and repeatable. The video below shows this and shows how every sediment pattern formed that exists today. And this is observable and repeatable which makes it empirical evidence. Evolutionists have nothing. Empirical evidence beats the “Deep Time” claim any day.

Video

Here is a more simple method using a sand picture that shows how sand will always layer in water.

Video

Side note: There are more than 60 Living Fossils the list is below.

List of Living Fossils:

Plants

Amborellaceae
Araucaria araucana the Monkey Puzzle tree
CycadsGinkgo tree (Nasikabatrachus sahyadrensis)
Horsetails Equisetum (Equisetaceae)
Metasequoia Dawn Redwood (Cupressaceae)
Sciadopitys tree (Sciadopityaceae)
Whisk ferns Psilotum (Psilotaceae)
Welwitschia (Welwitschiaceae)
Wollemia tree (Araucariaceae)
Fungi
Neolecta

Animals

Aardvark (Orycteropus afer)
Cypriot mouse (Mus cypriacus)
Red Panda (Ailurus fulgens)
Okapi (Okapia johnstoni)
Koala (Phascolarctos cinereus)
Laotian Rock Rat (Laonastes aenigmamus)
Volcano rabbit (Romerolagus diazi)
Amami rabbit (Pentalagus furnessi)
Iriomote cat (Prionailurus iriomotensis)
Monito del Monte (Dromiciops gliroides)
monotremes (the platypus and echidna)
Mountain Beaver (Aplodontia rufa)
Opossums
Acanthisittidae (New Zealand “wrens”)
Hoatzin(Ophisthocomus hoazin)
Broad-billed Sapayoa (Sapayoa aenigma)
Bearded Reedling (Panurus biarmicus)
Coliiformes (mousebirds, 6 living species in 2 genera)
Magpie-goose (Anseranas semipalmata)

Reptiles

Pig-nosed turtle
Crocodilia (crocodiles, gavials and alligators)
Tuatara (Sphenodon punctatus and Sphenodon guntheri)

Amphibians

Purple frog (Nasikabatrachus sahyadrensis)
Bony fish
Bowfin (Amia calva)
Coelacanth (the lobed-finned Latimeria menadoensis and Latimeria chalumnae)
Queensland lungfish (Neoceratodus fosteri)
Sturgeons and paddlefish (Acipenseriformes)

Sharks

Frilled shark (Chlamydoselachus anguineus)

Insects

Mantophasmatodea (gladiators; a few living species)
Mymarommatid wasps (10 living species in genus Palaeomymar)
Nevrorthidae (3 species-poor genera)
Notiothauma reedi (a scorpionfly relative)
Orussidae (parasitic wood wasps; about 70 living species in 16 genera)
Peloridiidae (peloridiid bugs; fewer than 30 living species in 13 genera)
Sikhotealinia zhiltzovae (a jurodid beetle)
Syntexis libocedrii (Anaxyelidae cedar wood wasp)

Crustaceans

glypheoid lobsters (3 living species: Neoglyphea inopinata, N. neocaledonica, and Laurentaeglyphea neocaledonica)
Stomatopods (Mantis shrimp)
Triops cancriformis (also known as Tadpole shrimp) (a notostracid crustacean)
Molluscs
Nautilina (e.g. Nautilus pompilius)
Neopilina galateae, a monoplacophorid mollusc
Ennucula superba (Nut clam)

Other invertebrates

crinoids
Horseshoe crab (only 4 living species of the class Xiphosura, family Limulidae: Limulus polyphemus,Tachypleus gigas, Tachypleus tridentatus and Carcinoscorpius rotundicauda)
Lingula anatina (an inarticulate brachiopod)
onychophorans
Valdiviathyris quenstedti (a craniforman brachiopod)

A company named Changing World Technologies has developed a way to make a bio diesel fuel in less than a day using discarded turkey and chicken parts.
http://discovermagazine.com/2006/apr/anything-oil#.UkkTN3-JkVc

So as we can see claiming that oil takes millions of years to form was based more on an assumption than fact.

  • If the flood happened and formed coal then coal should not take 60 millions years to form as science claims. An experiment was done on a piece of wood where it was subject to heat that was hot enough to create steam. And water was added to make the steam. The piece of wood was subjected to these conditions for 2 weeks. And in 2 weeks the coalifacation process started as seen in the pic below.
  • Share this page!

     

     

     

    YouTube

     

     

     

    FaceBook Feed
    Comments Box SVG iconsUsed for the like, share, comment, and reaction icons
    Good Fight Ministries
    Good Fight Ministries

    Joe Schimmel’s Testimony

    Blessed Hope Chapel
    Wed. May 22, 2019 – Wednesday Night Bible Study led by Pastor Joe Schimmel.
    ... See MoreSee Less

    Comment on Facebook

    Thank you for sharing Pastor Joe!!

    Ark Encounter
    Ark Encounter
    Veterans receive free admission on Memorial Day (May 27)!

    Veterans receive free admission on Memorial Day (May 27)! ... See MoreSee Less

    Comment on Facebook

    Ruthann Blizzard Michael Blizzard

    Uh, that's not nearly enough manpower for a ship that size.

    See ya'll next weekend! Can't wait!

    Creation Research Society
    Creation Research Society
    The Role of Epigenetics in Adaptation, Part 1

The following Matters of Fact column by CRS board member Dr. Jean Lightner appeared in Creation Matters, Vol. 23, No. 3, May/June 2018.

Q.  Does epigenetics play a role in adaptation? 
A.  Physiologist: YES! Evolutionary biologist: Maybe…. 

Adaptation, in the sense that we will discuss, can be defined as changes which help an organism become better suited to its environment. It is related to one of the foundational characteristics of life: the ability to respond to the environment. Physiological adaptation relies on epigenetics, or modifications that can affect gene expression. This does not change the sequence of DNA, but allows genes to be up or down regulated to suit the needs of the organism (see Lightner, 2013). 

There are several known mechanisms of epigenetic regulation (Figure 1): 

1) histone modification (including acetylation, phosphorylation, and methylation) 

2) cytosine methylation in DNA 

3) various non-coding RNA molecules (miRNA, siRNA, piRNA, and lncRNA) 

These mechanisms vary in the timeframe over which they typically act, allowing for both rapid changes and more stable, long-term changes. 

Scientists had assumed that these types of changes could not be inherited by offspring. The basis for this was largely philosophical: the Modern Synthesis (aka Neo-Darwinism) was predicated on the idea that the environment could not direct phenotypic change. Instead, the source of phenotypic variation is claimed to be from random genetic mutations; natural selection then reduces or eliminates less fit variants. To support the conjecture that epigenetic changes are not heritable, some scientists pointed to the observation that DNA methylation patterns are reset in pathways leading to offspring (i.e., germ cell formation and fertilization). However, it is now recognized that the reset of DNA methylation isn’t always complete, and it is not the only mechanism involved in trans-generational epigenetic inheritance (Morgan et al., 1999; Rassoulzadegan et al., 2006). 

For several decades now, it has been known that epigenetic inheritance can provide a source of heritable variation. However, it is not yet clear how often it does so, and what role it plays in adaptation of populations. Research has increased on this important topic, but much remains to be learned. One recent review article identified a web of potential interactions. It also pointed out that understanding patterns of natural epigenetic variation, the causes of that variation, and the consequences of it are necessary to adequately address the role it may have in adaptation (Richards et al., 2017). 

Factors influencing epigenetic variation 

In some studies it appears that DNA methylation differences are associated with underlying genetic differences. This raises the possibility of genetic control of epigenetic variability. It is also possible that a stable epimutation (heritable epigenetic change) could be inherited along with the underlying genetic sequence, thus causing the correlation. It has also been noted that epigenetic changes can influence genetic variation, specifically as it relates to silencing transposable elements, whose movement can change the sequence of a gene or its promoter (Richards et al., 2017). 

Some epimutations appear to arise stochastically. If these are stable over multiple generations, then natural selection may affect the pattern of variation. It is also known that environmental factors can effect heritable epigenetic changes, but the pattern and extent of this is not well known. Significant work needs to be done across different species, especially wild plants and animals, before reasonable generalizations can be made (Balao et al. 2018; Richards et al., 2017). 

FIGURE 1. A chromosome is made up of DNA coiled around proteins, called histones. There are three basic mechanisms by which epigenetic changes can be made. First, the tail of the histone proteins can undergo several types of modification (A), including phosphorylation (Ph), methylation (Me), and acetylation (Ac), that can affect accessibility of specific genes. Secondly, cytosine residues in DNA can be methylated (red dot) or un– methylated (green dot), the details of which are represented in section B of the figure. This affects gene transcription (the copying of DNA to make mRNA). Finally, various microRNAs (C) can bind mRNA to prevent synthesis into proteins. All of these mechanisms play a role in changing gene expression without affecting the DNA sequence. (Illustration is from Gómez-Díaz et al., 2012, and is used herein according to the CC BY license. )

Learn more about creation www.creationresearch.org

    The Role of Epigenetics in Adaptation, Part 1

    The following Matters of Fact column by CRS board member Dr. Jean Lightner appeared in Creation Matters, Vol. 23, No. 3, May/June 2018.

    Q. Does epigenetics play a role in adaptation?
    A. Physiologist: YES! Evolutionary biologist: Maybe….

    Adaptation, in the sense that we will discuss, can be defined as changes which help an organism become better suited to its environment. It is related to one of the foundational characteristics of life: the ability to respond to the environment. Physiological adaptation relies on epigenetics, or modifications that can affect gene expression. This does not change the sequence of DNA, but allows genes to be up or down regulated to suit the needs of the organism (see Lightner, 2013).

    There are several known mechanisms of epigenetic regulation (Figure 1):

    1) histone modification (including acetylation, phosphorylation, and methylation)

    2) cytosine methylation in DNA

    3) various non-coding RNA molecules (miRNA, siRNA, piRNA, and lncRNA)

    These mechanisms vary in the timeframe over which they typically act, allowing for both rapid changes and more stable, long-term changes.

    Scientists had assumed that these types of changes could not be inherited by offspring. The basis for this was largely philosophical: the Modern Synthesis (aka Neo-Darwinism) was predicated on the idea that the environment could not direct phenotypic change. Instead, the source of phenotypic variation is claimed to be from random genetic mutations; natural selection then reduces or eliminates less fit variants. To support the conjecture that epigenetic changes are not heritable, some scientists pointed to the observation that DNA methylation patterns are reset in pathways leading to offspring (i.e., germ cell formation and fertilization). However, it is now recognized that the reset of DNA methylation isn’t always complete, and it is not the only mechanism involved in trans-generational epigenetic inheritance (Morgan et al., 1999; Rassoulzadegan et al., 2006).

    For several decades now, it has been known that epigenetic inheritance can provide a source of heritable variation. However, it is not yet clear how often it does so, and what role it plays in adaptation of populations. Research has increased on this important topic, but much remains to be learned. One recent review article identified a web of potential interactions. It also pointed out that understanding patterns of natural epigenetic variation, the causes of that variation, and the consequences of it are necessary to adequately address the role it may have in adaptation (Richards et al., 2017).

    Factors influencing epigenetic variation

    In some studies it appears that DNA methylation differences are associated with underlying genetic differences. This raises the possibility of genetic control of epigenetic variability. It is also possible that a stable epimutation (heritable epigenetic change) could be inherited along with the underlying genetic sequence, thus causing the correlation. It has also been noted that epigenetic changes can influence genetic variation, specifically as it relates to silencing transposable elements, whose movement can change the sequence of a gene or its promoter (Richards et al., 2017).

    Some epimutations appear to arise stochastically. If these are stable over multiple generations, then natural selection may affect the pattern of variation. It is also known that environmental factors can effect heritable epigenetic changes, but the pattern and extent of this is not well known. Significant work needs to be done across different species, especially wild plants and animals, before reasonable generalizations can be made (Balao et al. 2018; Richards et al., 2017).

    FIGURE 1. A chromosome is made up of DNA coiled around proteins, called histones. There are three basic mechanisms by which epigenetic changes can be made. First, the tail of the histone proteins can undergo several types of modification (A), including phosphorylation (Ph), methylation (Me), and acetylation (Ac), that can affect accessibility of specific genes. Secondly, cytosine residues in DNA can be methylated (red dot) or un– methylated (green dot), the details of which are represented in section B of the figure. This affects gene transcription (the copying of DNA to make mRNA). Finally, various microRNAs (C) can bind mRNA to prevent synthesis into proteins. All of these mechanisms play a role in changing gene expression without affecting the DNA sequence. (Illustration is from Gómez-Díaz et al., 2012, and is used herein according to the CC BY license. )

    Learn more about creation www.creationresearch.org
    ... See MoreSee Less

    Hidden History of Evolution
    Hidden History of Evolution
    ~ Issac

    ~ Issac ... See MoreSee Less

    Comment on Facebook

    Evolution is a lie, based on unsupported assumptions.

    Science leads to God
    Science leads to God
    Had to stop the test, cant have evolution proven wrong. ~ Issac

    Had to stop the test, can't have evolution proven wrong. ~ Issac ... See MoreSee Less

    180 Movie
    180 Movie

    Are you one of the over 49,500 views who’s watched “7 Reasons” on YouTube since its release a week ago?

    We’ve been so encouraged to read the many online comments, such as this one from YouTube:

    "This is THE first time I’ve ever cried (quietly flowing down my cheeks and dripping off my chin kinda tears), regarding the abortion I had 9 years ago. I’ve LITERALLY NEVER felt convicted, not once before…And after watching this.. well, yeh.. I’ve just sat here frowning, now my eyes have dried, and thinking to myself, “Wow, what IS happening to me?!”…I’m a feminist, pro-choice (I thought), equality, love and peace to all kinda person. I guess I better think again................. Mind = blown. Thank you for this video."

    If you haven't watched and shared it yet, watch "7 Reasons" free on YouTube at 7ReasonsMovie.com
    ... See MoreSee Less

    Ray Comfort has mental retardation ... See MoreSee Less

    Pray for Militant Atheist Page.
    Pray for Militant Atheist Page.
    n case you did not know this. ~ Issac

    n case you did not know this. ~ IssacIn case you did not know this. ~ Issac ... See MoreSee Less

    Where is the evolution?
    Where is the evolution?
    Name: Monito del Monte
Status: Thought to be extinct until its rediscovery.
Information: A remarkable, diminutive marsupial thought to have been extinct until one was discovered in a thicket of Chilean bamboo in the southern Andes.
Thought to exist: 55 million years ago.
Reference: http://historysevidenceofdinosaursandmen.weebly.com/living-fossils.html
The fossilised ankle and ear bones are those of Australias earliest known marsupial, Djarthia, a primitive mouse-like creature that lived 55 million years ago. ..a new study in the journal PLoS ONE [http://www.plosone.org/] has confirmed that Djarthia is also a primitive relative of the small marsupial known as the Monito del Monte - or little mountain monkey - from the dense humid forests of Chile and Argentina.
Reference: http://www.create.unsw.edu.au/news/2008-03-25_monito.html
The monito del monte, Spanish for ‘little bush monkey’, named after its monkey-like partially prehensile tail, is a diminutive marsupial native to South America in the Valdivian temperate rain forests of the southern Andes (Chile and Argentina). It is the only extant species in the ancient order of Microbiotheria. ...Genetic studies show that this species retains the most primitive characteristics of its group, and thus is regarded as a “living fossil.”
reference: http://www.eartharchives.org/articles/scientists-uncover-two-new-species-of-elusive-south-american-marsupial/

    Name: Monito del Monte
    Status: Thought to be extinct until it's rediscovery.
    Information: A remarkable, diminutive marsupial thought to have been extinct until one was discovered in a thicket of Chilean bamboo in the southern Andes.
    Thought to exist: 55 million years ago.
    Reference: http://historysevidenceofdinosaursandmen.weebly.com/…
    "The fossilised ankle and ear bones are those of Australia's earliest known marsupial, Djarthia, a primitive mouse-like creature that lived 55 million years ago. ..a new study in the journal PLoS ONE [http://www.plosone.org/] has confirmed that Djarthia is also a primitive relative of the small marsupial known as the Monito del Monte - or "little mountain monkey" - from the dense humid forests of Chile and Argentina."
    Reference: http://create.unsw.edu.au/news/…
    "The monito del monte, Spanish for ‘little bush monkey’, named after its monkey-like partially prehensile tail, is a diminutive marsupial native to South America in the Valdivian temperate rain forests of the southern Andes (Chile and Argentina). It is the only extant species in the ancient order of Microbiotheria. ...Genetic studies show that this species retains the most primitive characteristics of its group, and thus is regarded as a “living fossil.”"
    reference: http://eartharchives.org/articles/…
    ... See MoreSee Less

    Comment on Facebook

    Your picture makes it seem like the two species shown are found 55 Ma apart even though they are both modern species. Rather, it was the genus Djarthia (whose exact taxonomic position is uncertain) that occurs in the Paleocene, as noted in the PLOS paper you provided. This graphic is either a misunderstanding or diliberate misrepresentation of the references cited. May I ask what formal training in paleontology the admin of this page has had?

    We didn't claim the skulls were from a 55 million year old fossil, it is the references that claim Monito del Monte is regarded as a living fossil and thought to exist: 55 million years ago.

    Colby, please stop spamming the contrasts. There is no need to post the same link multiple times, Thank you.

    I was just doing a one shot on each post. I didnt even think anyone even looked at this page anymore. I apologize.

    Looks like the Colbinator deleted his post 😭

    View more comments

    Load more