Climate change, what they won’t tell you.

Share this page!

Click image to read

Well let’s see. Is Al Gore fixing to announce his brand of climate change beer? Are beer companies fixing to start donating a percentage or profits from sells climate change groups? Are posters fixing to get made that instead of saying: Save the Polar Bear, to say instead: Save our beer? So what’s the picture going to be? A beer can exploding in the hot desert sun? A beer can taking a ride on an iceberg? Or maybe a Polar Beer ripping one open because he’s starving to death?

So when you guys going to figure out that this is all a joke played on you to take your money? Oh, and your beer LOL.

The other day I explained how melting icebergs will not be adding to the volume of water worldwide. I did a meme to give the visual example of what I was talking about.

Now seeing this who do you think would have been the one who did this because He had made a promise to never flood the earth again after Noah’s flood? God did this. And to this day scientists do not really understand why water expands when it freezes while everything else contracts.

Secrets of Climate Change part 2. What they won’t tell you.

Sunlight only penetrates water so far. So the heating effect of the sun will always remain in the same upper area because only that portion of the oceans can be heated period (laws of physics). And the raising of ocean level has zero effect on this. But the raising of the ocean levels does increase the volume area that the sun cannot reach therefore cannot heated by it’s rays.

So the area that stays cold due to the sun rays not being able to reach it increases, while the area of depth that can be reached by the sun’s rays always stays the same. Equaling more cold water not less.

Example: If all the ice melts and the ocean level increases the area by 500 feet but what the sun penetrates remains the same (laws of physics do not change on this). The area that the sun “cannot” penetrate increases, which increases the cold water is worldwide. So water ocean levels rising increases the cold water in the oceans not the hot. This in effect cools our oceans not increase the heat.

The moon pulling on the oceans mixing the cooler waters with the warmer waters would defeat the purpose of warmer water being a problem because now there is “more colder water” to mix with the hotter water.

Secrets of Climate Change part 3. What they won’t tell you.

As ice bergs melt and land gets covered with water. The surface area of the water increases which also increases the available surface area that the sun can evaporate. More moisture means more clouds, more clouds means more of the sun’s rays being reflected back into space = earth cooling back down.

Rain from the colder upper atmosphere from these extra clouds also helps the heat transfer rate from the planet to space ratio. So this triggers 2 cooling effects on the planet.

Climate Change part 4. What they won’t tell you.

Climate change part 5, what they won’t tell you.

Plankton can make clouds. When it gets too hot, plankton produce a chemical that floats on the water which increases absorption of the sun’s warming rays. This heats up the surface water to increase the percentage of evaporation to make clouds.

When the chemical itself evaporates and helps make the cloud. The cloud actually has a really white color to it which reflects even more of the sun into space. So God made little creatures to help stop global warming. Google: plankton make clouds and read all about it.

Even NASA has a few pages on this and there are even satellites that track this because this ability can change the weather in a huge area.

Climate Change part 6, what they won’t tell you.

Climate Change extremists like to make claims about things like this hoping you won;t go look it up. Well I did and this is what I found.

Video

Share this page!

 

 

 

YouTube

 

 

 

FaceBook Feed
Comments Box SVG iconsUsed for the like, share, comment, and reaction icons
Good Fight Ministries
Good Fight Ministries

Joe Schimmel’s Testimony

Blessed Hope Chapel
Wed. May 22, 2019 – Wednesday Night Bible Study led by Pastor Joe Schimmel.
... See MoreSee Less

Comment on Facebook

Thank you for sharing Pastor Joe!!

Ark Encounter
Ark Encounter
Veterans receive free admission on Memorial Day (May 27)!

Veterans receive free admission on Memorial Day (May 27)! ... See MoreSee Less

Comment on Facebook

Ruthann Blizzard Michael Blizzard

Uh, that's not nearly enough manpower for a ship that size.

See ya'll next weekend! Can't wait!

Creation Research Society
Creation Research Society
The Role of Epigenetics in Adaptation, Part 1

The following Matters of Fact column by CRS board member Dr. Jean Lightner appeared in Creation Matters, Vol. 23, No. 3, May/June 2018.

Q.  Does epigenetics play a role in adaptation? 
A.  Physiologist: YES! Evolutionary biologist: Maybe…. 

Adaptation, in the sense that we will discuss, can be defined as changes which help an organism become better suited to its environment. It is related to one of the foundational characteristics of life: the ability to respond to the environment. Physiological adaptation relies on epigenetics, or modifications that can affect gene expression. This does not change the sequence of DNA, but allows genes to be up or down regulated to suit the needs of the organism (see Lightner, 2013). 

There are several known mechanisms of epigenetic regulation (Figure 1): 

1) histone modification (including acetylation, phosphorylation, and methylation) 

2) cytosine methylation in DNA 

3) various non-coding RNA molecules (miRNA, siRNA, piRNA, and lncRNA) 

These mechanisms vary in the timeframe over which they typically act, allowing for both rapid changes and more stable, long-term changes. 

Scientists had assumed that these types of changes could not be inherited by offspring. The basis for this was largely philosophical: the Modern Synthesis (aka Neo-Darwinism) was predicated on the idea that the environment could not direct phenotypic change. Instead, the source of phenotypic variation is claimed to be from random genetic mutations; natural selection then reduces or eliminates less fit variants. To support the conjecture that epigenetic changes are not heritable, some scientists pointed to the observation that DNA methylation patterns are reset in pathways leading to offspring (i.e., germ cell formation and fertilization). However, it is now recognized that the reset of DNA methylation isn’t always complete, and it is not the only mechanism involved in trans-generational epigenetic inheritance (Morgan et al., 1999; Rassoulzadegan et al., 2006). 

For several decades now, it has been known that epigenetic inheritance can provide a source of heritable variation. However, it is not yet clear how often it does so, and what role it plays in adaptation of populations. Research has increased on this important topic, but much remains to be learned. One recent review article identified a web of potential interactions. It also pointed out that understanding patterns of natural epigenetic variation, the causes of that variation, and the consequences of it are necessary to adequately address the role it may have in adaptation (Richards et al., 2017). 

Factors influencing epigenetic variation 

In some studies it appears that DNA methylation differences are associated with underlying genetic differences. This raises the possibility of genetic control of epigenetic variability. It is also possible that a stable epimutation (heritable epigenetic change) could be inherited along with the underlying genetic sequence, thus causing the correlation. It has also been noted that epigenetic changes can influence genetic variation, specifically as it relates to silencing transposable elements, whose movement can change the sequence of a gene or its promoter (Richards et al., 2017). 

Some epimutations appear to arise stochastically. If these are stable over multiple generations, then natural selection may affect the pattern of variation. It is also known that environmental factors can effect heritable epigenetic changes, but the pattern and extent of this is not well known. Significant work needs to be done across different species, especially wild plants and animals, before reasonable generalizations can be made (Balao et al. 2018; Richards et al., 2017). 

FIGURE 1. A chromosome is made up of DNA coiled around proteins, called histones. There are three basic mechanisms by which epigenetic changes can be made. First, the tail of the histone proteins can undergo several types of modification (A), including phosphorylation (Ph), methylation (Me), and acetylation (Ac), that can affect accessibility of specific genes. Secondly, cytosine residues in DNA can be methylated (red dot) or un– methylated (green dot), the details of which are represented in section B of the figure. This affects gene transcription (the copying of DNA to make mRNA). Finally, various microRNAs (C) can bind mRNA to prevent synthesis into proteins. All of these mechanisms play a role in changing gene expression without affecting the DNA sequence. (Illustration is from Gómez-Díaz et al., 2012, and is used herein according to the CC BY license. )

Learn more about creation www.creationresearch.org

The Role of Epigenetics in Adaptation, Part 1

The following Matters of Fact column by CRS board member Dr. Jean Lightner appeared in Creation Matters, Vol. 23, No. 3, May/June 2018.

Q. Does epigenetics play a role in adaptation?
A. Physiologist: YES! Evolutionary biologist: Maybe….

Adaptation, in the sense that we will discuss, can be defined as changes which help an organism become better suited to its environment. It is related to one of the foundational characteristics of life: the ability to respond to the environment. Physiological adaptation relies on epigenetics, or modifications that can affect gene expression. This does not change the sequence of DNA, but allows genes to be up or down regulated to suit the needs of the organism (see Lightner, 2013).

There are several known mechanisms of epigenetic regulation (Figure 1):

1) histone modification (including acetylation, phosphorylation, and methylation)

2) cytosine methylation in DNA

3) various non-coding RNA molecules (miRNA, siRNA, piRNA, and lncRNA)

These mechanisms vary in the timeframe over which they typically act, allowing for both rapid changes and more stable, long-term changes.

Scientists had assumed that these types of changes could not be inherited by offspring. The basis for this was largely philosophical: the Modern Synthesis (aka Neo-Darwinism) was predicated on the idea that the environment could not direct phenotypic change. Instead, the source of phenotypic variation is claimed to be from random genetic mutations; natural selection then reduces or eliminates less fit variants. To support the conjecture that epigenetic changes are not heritable, some scientists pointed to the observation that DNA methylation patterns are reset in pathways leading to offspring (i.e., germ cell formation and fertilization). However, it is now recognized that the reset of DNA methylation isn’t always complete, and it is not the only mechanism involved in trans-generational epigenetic inheritance (Morgan et al., 1999; Rassoulzadegan et al., 2006).

For several decades now, it has been known that epigenetic inheritance can provide a source of heritable variation. However, it is not yet clear how often it does so, and what role it plays in adaptation of populations. Research has increased on this important topic, but much remains to be learned. One recent review article identified a web of potential interactions. It also pointed out that understanding patterns of natural epigenetic variation, the causes of that variation, and the consequences of it are necessary to adequately address the role it may have in adaptation (Richards et al., 2017).

Factors influencing epigenetic variation

In some studies it appears that DNA methylation differences are associated with underlying genetic differences. This raises the possibility of genetic control of epigenetic variability. It is also possible that a stable epimutation (heritable epigenetic change) could be inherited along with the underlying genetic sequence, thus causing the correlation. It has also been noted that epigenetic changes can influence genetic variation, specifically as it relates to silencing transposable elements, whose movement can change the sequence of a gene or its promoter (Richards et al., 2017).

Some epimutations appear to arise stochastically. If these are stable over multiple generations, then natural selection may affect the pattern of variation. It is also known that environmental factors can effect heritable epigenetic changes, but the pattern and extent of this is not well known. Significant work needs to be done across different species, especially wild plants and animals, before reasonable generalizations can be made (Balao et al. 2018; Richards et al., 2017).

FIGURE 1. A chromosome is made up of DNA coiled around proteins, called histones. There are three basic mechanisms by which epigenetic changes can be made. First, the tail of the histone proteins can undergo several types of modification (A), including phosphorylation (Ph), methylation (Me), and acetylation (Ac), that can affect accessibility of specific genes. Secondly, cytosine residues in DNA can be methylated (red dot) or un– methylated (green dot), the details of which are represented in section B of the figure. This affects gene transcription (the copying of DNA to make mRNA). Finally, various microRNAs (C) can bind mRNA to prevent synthesis into proteins. All of these mechanisms play a role in changing gene expression without affecting the DNA sequence. (Illustration is from Gómez-Díaz et al., 2012, and is used herein according to the CC BY license. )

Learn more about creation www.creationresearch.org
... See MoreSee Less

Hidden History of Evolution
Hidden History of Evolution
~ Issac

~ Issac ... See MoreSee Less

Comment on Facebook

Evolution is a lie, based on unsupported assumptions.

Science leads to God
Science leads to God
Had to stop the test, cant have evolution proven wrong. ~ Issac

Had to stop the test, can't have evolution proven wrong. ~ Issac ... See MoreSee Less

180 Movie
180 Movie

Are you one of the over 49,500 views who’s watched “7 Reasons” on YouTube since its release a week ago?

We’ve been so encouraged to read the many online comments, such as this one from YouTube:

"This is THE first time I’ve ever cried (quietly flowing down my cheeks and dripping off my chin kinda tears), regarding the abortion I had 9 years ago. I’ve LITERALLY NEVER felt convicted, not once before…And after watching this.. well, yeh.. I’ve just sat here frowning, now my eyes have dried, and thinking to myself, “Wow, what IS happening to me?!”…I’m a feminist, pro-choice (I thought), equality, love and peace to all kinda person. I guess I better think again................. Mind = blown. Thank you for this video."

If you haven't watched and shared it yet, watch "7 Reasons" free on YouTube at 7ReasonsMovie.com
... See MoreSee Less

Ray Comfort has mental retardation ... See MoreSee Less

Pray for Militant Atheist Page.
Pray for Militant Atheist Page.
n case you did not know this. ~ Issac

n case you did not know this. ~ IssacIn case you did not know this. ~ Issac ... See MoreSee Less

Where is the evolution?
Where is the evolution?
Name: Monito del Monte
Status: Thought to be extinct until its rediscovery.
Information: A remarkable, diminutive marsupial thought to have been extinct until one was discovered in a thicket of Chilean bamboo in the southern Andes.
Thought to exist: 55 million years ago.
Reference: http://historysevidenceofdinosaursandmen.weebly.com/living-fossils.html
The fossilised ankle and ear bones are those of Australias earliest known marsupial, Djarthia, a primitive mouse-like creature that lived 55 million years ago. ..a new study in the journal PLoS ONE [http://www.plosone.org/] has confirmed that Djarthia is also a primitive relative of the small marsupial known as the Monito del Monte - or little mountain monkey - from the dense humid forests of Chile and Argentina.
Reference: http://www.create.unsw.edu.au/news/2008-03-25_monito.html
The monito del monte, Spanish for ‘little bush monkey’, named after its monkey-like partially prehensile tail, is a diminutive marsupial native to South America in the Valdivian temperate rain forests of the southern Andes (Chile and Argentina). It is the only extant species in the ancient order of Microbiotheria. ...Genetic studies show that this species retains the most primitive characteristics of its group, and thus is regarded as a “living fossil.”
reference: http://www.eartharchives.org/articles/scientists-uncover-two-new-species-of-elusive-south-american-marsupial/

Name: Monito del Monte
Status: Thought to be extinct until it's rediscovery.
Information: A remarkable, diminutive marsupial thought to have been extinct until one was discovered in a thicket of Chilean bamboo in the southern Andes.
Thought to exist: 55 million years ago.
Reference: http://historysevidenceofdinosaursandmen.weebly.com/…
"The fossilised ankle and ear bones are those of Australia's earliest known marsupial, Djarthia, a primitive mouse-like creature that lived 55 million years ago. ..a new study in the journal PLoS ONE [http://www.plosone.org/] has confirmed that Djarthia is also a primitive relative of the small marsupial known as the Monito del Monte - or "little mountain monkey" - from the dense humid forests of Chile and Argentina."
Reference: http://create.unsw.edu.au/news/…
"The monito del monte, Spanish for ‘little bush monkey’, named after its monkey-like partially prehensile tail, is a diminutive marsupial native to South America in the Valdivian temperate rain forests of the southern Andes (Chile and Argentina). It is the only extant species in the ancient order of Microbiotheria. ...Genetic studies show that this species retains the most primitive characteristics of its group, and thus is regarded as a “living fossil.”"
reference: http://eartharchives.org/articles/…
... See MoreSee Less

Comment on Facebook

Your picture makes it seem like the two species shown are found 55 Ma apart even though they are both modern species. Rather, it was the genus Djarthia (whose exact taxonomic position is uncertain) that occurs in the Paleocene, as noted in the PLOS paper you provided. This graphic is either a misunderstanding or diliberate misrepresentation of the references cited. May I ask what formal training in paleontology the admin of this page has had?

We didn't claim the skulls were from a 55 million year old fossil, it is the references that claim Monito del Monte is regarded as a living fossil and thought to exist: 55 million years ago.

Colby, please stop spamming the contrasts. There is no need to post the same link multiple times, Thank you.

I was just doing a one shot on each post. I didnt even think anyone even looked at this page anymore. I apologize.

Looks like the Colbinator deleted his post 😭

View more comments

Load more